Basic Overview Of Military Antennas

By Patty Goff


The antennas are characterized by a number of parameters. Radiation pattern is a graphic representation of radiation characteristics of an antenna according to direction (azimuth and elevation coordinates). Most often represent the radiated power density, but also can find diagrams or phase bias (military antennas). Considering the radiative pattern, we can make a general classification of types of antenna and we can define the directivity of a receiver (isotropic antenna, directional, bi-directional, omni).

This parameter is defined as the ratio between the maximum radiated power in a geometric direction and power radiated in opposite direction. When this relationship is reflected in dB scale, the ratio F / B (Front / Back) is the difference in dB between the maximum radiation level and radiation level of 180 degrees. This parameter is especially useful when interference back is critical in choosing the antenna that we use.

This relationship also can be seen from another point of view, indicating how good the antenna in the rejection of signals from the rear. Rarely is really important, because the interference from the rear do not usually happen, but it can happen. The F / B ratio is not a very useful number because often varies greatly from one channel to another. Of course, if it is the radiation pattern, then the F / B is not needed.

Comparing an antenna yagi with a satellite, the antenna yagi have a F / B ratio of about 15 dB (depending on model and manufacturer) while for the parabolic relationship F / B is> 35dB (depending on model and manufacturer) . This is observed as "good" antenna on rejection of signals by the rear. The higher the paramentro in parabolic antennas will be better. The 15 dB of antenna yagui it can also be interpreted as the attenuation that would have on the system, if for example a bounced capture of a building, by the rear of the wave. Radiation resistance - when power is supplied to an aerial, radiating part of it and part is converted into heat dissipating. When talking about radiation resistance, it is made taking into account that cannot be measured directly.

The antenna resistance is the sum of the transmission resistance and loss resistance. The antennas are called resonant when its input reactance vanishes. Beam is a radiation parameter, linked to a radiation pattern. May define the beam width at -3 dB, which is angular range within which the radiated power density is equal to half of maximum power (in main direction of radiation).

The antenna location should have unrestricted access to just above the the sky. Earth would reflect more or less of radio waves. This depends on: mast placed as high as possible so that there are no obstructions between the transmitter and receiver. Satellite or interstellar radio propagation (Earth to satellite, space shuttle) or (satellite, space shuttle to Earth). There must be no obstructions between the satellite and ground transmitters.

The polarization can be linear, circular and elliptical. Linear polarization can take different orientations (horizontal, vertical, +45, -45). The circular or elliptical polarizations can be right or left (right-handed or left-handed), according to the direction of rotation of the field (observed away from the antenna). Transmitters within decoupling coefficient defined polarization. This measures the amount of power that is capable of receiving a polarized antenna of a form having an effective.

The wire transmitters are analyzed from the electrical currents of the conductors. Aperture aerials are those that use surfaces or openings to direct the electromagnetic beam which concentrate their transmission and reception antenna system in one direction.




About the Author:



No comments:

Post a Comment